
RAPOC Documentation
Release 1.0.8

Lorenzo V. Mugnai

Jan 13, 2023

CONTENTS:

1 Installation & updates 3
1.1 Installing from Pypi . 3
1.2 Installing from git . 3
1.3 Uninstall Rapoc . 3
1.4 Update Rapoc . 4

2 User Guide 5
2.1 Input . 5
2.2 The model . 6
2.3 Include Rayleigh scattering . 10

3 API Guide 13
3.1 API Content . 14

4 Cite 27

5 Meet the authors 29

Index 31

i

ii

RAPOC Documentation, Release 1.0.8

Developed by Lorenzo V. Mugnai and Darius Modirrousta-Galian, the RAPOC code is the product of a collaboration
between Sapienza Università di Roma, Università degli Studi di Palermo and INAF - Osservatorio Astronomico di
Palermo.

CONTENTS: 1

RAPOC Documentation, Release 1.0.8

RAPOC uses molecular absorption measurements (i.e. wavelength-dependent opacities) to calculate Rosseland and
Planck mean opacities that are commonly used in atmospheric modelling.

RAPOC is designed to be simple, straightforward, and easily incorporated into other codes. It is completely written in
Python and documented with docstrings.

2 CONTENTS:

CHAPTER

ONE

INSTALLATION & UPDATES

1.1 Installing from Pypi

RAPOC can be installed from the Pypi repository with the following script:

pip install rapoc

1.2 Installing from git

RAPOC may also be cloned from the main git repository:

git clone https://github.com/ExObsSim/Rapoc-public.git

The next step is to move into the RAPOC folder:

cd /your_path/Rapoc

Then:

pip install .

To check if one has the correct setup:

python -c "import rapoc"

1.3 Uninstall Rapoc

RAPOC is installed in your system as a standard python package: to uninstall it completely:

pip uninstall rapoc

3

RAPOC Documentation, Release 1.0.8

1.4 Update Rapoc

1.4.1 Update from Pypi

To update RAPOC to the latest stable version:

pip install rapoc -upgrade

1.4.2 Update from source

One can download or pull a newer version of RAPOC over the old one, replacing all modified data.

Then one has to place themselves inside the installation directory within the console:

cd /your_path/Rapoc

RAPOC can now be updated:

pip install . --upgrade

or simply:

pip install .

4 Chapter 1. Installation & updates

CHAPTER

TWO

USER GUIDE

This guide is an instruction manual on the RAPOC (Rosseland And Planck Opacity Converter) tool and how it can be
included in one’s own code.

For a quickstart, please refer to the python notebook inside the examples directory. If RAPOC has been installed from
Pypi, an example notebook can be found on the GitHub repository.

2.1 Input

Everything inside RAPOC is managed by the Model class. The only input required by RAPOC is the opacity data.
Opacity data can be directly downloaded from dedicated repositories such as ExoMol or, instead, by a custom made
Python dictionary. In this guide both approaches will be explored:

2.1.1 Using ExoMol (easier)

This is the most straightforward approach. Note that RAPOC only accepts data with the TauRex format. Once the
opacities have been downloaded from ExoMol, RAPOC will load them using the ExoMolFileLoader. For practice,
we use the TauRex formatted opacities for water. However, if other molecules are required then they can be downloaded
here.

2.1.2 Using Dace

This is another straightforward approach. The opacities can be downloaded from Dace as binary files. RAPOC will
load them using the DACEFileLoader by pointing to the directory where the binary files (.bin) are stored.

2.1.3 Python dictionary (harder)

To load data from a Python dictionary, the code uses the DictLoader class. The user may also refer to its documen-
tation. To summarise, the python dictionary must have the layout described in the Input data layout.

5

https://github.com/ExObsSim/rapoc-public
http://exomol.com
http://exomol.com/db/H2O/1H2-16O/POKAZATEL/1H2-16O__POKAZATEL__R15000_0.3-50mu.xsec.TauREx.h5
http://exomol.com/data/data-types/opacity/
https://dace.unige.ch/opacityDatabase/

RAPOC Documentation, Release 1.0.8

Table 1: Input data layout

Information data format supported keys names
molecular name string mol
pressure grid in [𝑃𝑎] list or

np.array
p, P, pressure, pressure_grid

temperature grid [𝐾] list or
np.array

t, T, temperature, temperature_grid

wavenumber grid
[1/𝑐𝑚]

list or
np.array

wn, wavenumber, wavenumbers, wavenumbers_grid,
wavenumber_grid

opacities [𝑚2/𝑘𝑔] list or
np.array

opacities

Every value in the dictionary can be assigned units by using the units astropy.units.Quantity.

2.2 The model

In this section we will assume that the data has been downloaded from ExoMol and that the input_file variable is a
string pointing to that file.

Once the data is ready, it may loaded into the Model class. After this, two classes can be produced, one for Rosseland
and the other for Planck mean opacities: Rosseland , Planck . These models can be initialised as such:

from rapoc import Rosseland, Planck

ross = Rosseland(input_data=input_file)
plan = Planck(input_data=input_file)

Normally, the molecule name is automatically extracted from the input data. However, if the molecule name is not
present in the input data or if any errors occur, it can be manually set using the molecule keyword argument:

ross = Rosseland(input_data=input_file, molecule='H2O')
plan = Planck(input_data=input_file, molecule='H2O')

2.2.1 Calculating the mean opacities

For purely illustrative purposes, a temperature (T) of 1000 K with a pressure (P) of 1000 Pa in the wavelength range of
1-10 micron will be used. Therefore, the first step is to define the temperature, pressure and wavelength range:

import astropy.units as u

P = 1000.0 *u.Pa
T = 1000.0 *u.K
wl = (1 * u.um, 10 * u.um)

Due to the units provided by the astropy.units.Quantity module, RAPOC can handle the conversions automati-
cally. To perform the opacity calculations the following function is used: estimate()

r_estimate = ross.estimate(P_input = P, T_input=T, band=wl, mode='closest')

0.00418 m2 / kg

6 Chapter 2. User Guide

http://exomol.com

RAPOC Documentation, Release 1.0.8

p_estimate = plan.estimate(P_input = P, T_input=T, band=wl, mode='closest')

17.9466 m2 / kg

The investigated wavelength range may also be expressed as a wavenumbers range or frequencies range. This is achieved
by attaching the corresponding units.

There are two estimation modes available in RAPOC:

• closest: the code estimates the mean opacity for the closest pressure and temperature values found within the
input data grid.

• linear or loglinear: the code estimates the mean opacity by performing an interpolation that makes use of the
scipy.interpolate.griddata().

In the second case, RAPOC needs to first build a map() of the mean opacities in the input pressure and temperature
data grid. This may be slow. To make this process faster, RAPOC will continue to reuse this map until the user asks
for estimates in another wavelength range. Only then would RAPOC produce a new map.

RAPOC can also perform estimates of multiple temperatures and pressures at once (e.g. lists and arrays):

P = [1, 10] *u.bar
T = [500.0, 1000.0, 2000.0] *u.K
wl = (1 * u.um, 10 * u.um)

r_estimate = ross.estimate(P_input = P, T_input=T, band=wl, mode='closest')

[[0.00094728 0.03303942 0.17086334]
[0.00484263 0.08600765 0.21673218]] m2 / kg

p_estimate = plan.estimate(P_input = P, T_input=T, band=wl, mode='closest')

[[27.18478963 17.36108261 8.57782242]
[27.17086583 17.78923892 8.8249388]] m2 / kg

2.2.2 Build some plots

RAPOC can build plots of the calculated Rosseland and Planck mean opacities by using estimate_plot().

If only a single value has been produced, then to produce plots one can use the following script:

P = 1000.0 *u.Pa
T = 1000.0 *u.K
wl = (1 * u.um, 10 * u.um)

fig0, ax0 = ross.estimate_plot(P_input = P, T_input=T, band=wl, mode='closest')
fig1, ax1 = plan.estimate_plot(P_input = P, T_input=T, band=wl, mode='closest')

2.2. The model 7

RAPOC Documentation, Release 1.0.8

If instead multiple opacities have been calculated, then then the script should be:

P = [1, 10] *u.bar
T = [500.0, 1000.0, 2000.0] *u.K
wl = (1 * u.um, 10 * u.um)

fig0, ax0 = ross.estimate_plot(P_input = P, T_input=T, band=wl, mode='closest')
fig1, ax1 = plan.estimate_plot(P_input = P, T_input=T, band=wl, mode='closest')

8 Chapter 2. User Guide

RAPOC Documentation, Release 1.0.8

Notwithstanding, to force the production of a map_plot() with a single value, the following should be used
force_map=True

2.2. The model 9

RAPOC Documentation, Release 1.0.8

2.3 Include Rayleigh scattering

2.3.1 Initialising Rayleigh data

RAPOC can estimate the Rayleigh scattering absorption for a list of atoms, using the tables and equations in Chapter
10 of David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, hbcponline, CRC Press,
Boca Raton, FL, 2005.

To compute the Rayleigh scattering mean opacities, the first step is to produce the Rayleigh data set. This can be done
initialising the Rayleigh class. This class is similar to a FileLoader class: it can be injected into a Model as input
data, and therefore used as any other input data to estimate the mean opacities.

To initialise the Rayleigh it is needed the atom and the wavenumber grid to use to sample the Rayleigh scattering.
In the following example we estimate the scattering data for hydrogen in a simple wavenumber grid: 100000, 10000,
1000 cm-1

from rapoc import Rayleigh
rayleigh = Rayleigh('H', wavenumber_grid=[100000, 10000, 1000])

Another way to initialise the Rayleigh is to use an already initialised Model. This can be useful is the Rayleigh
scattering is to be used along with other absorptions. Let’s assume that a Planck class has been initialised already.
That model can be used to produce a Rayleigh scattering dataset sampled at the same wavenumbers grid.

plan = Planck(input_data=input_file)
rayleigh = Rayleigh('H', model=plan)

Once the wavenumber grid is produced, either using the wavenumber_grid or the model keyword, the class produces
the opacities data using the compute_opacities().

2.3.2 Estimating Rayleigh mean opacities

The initialised Rayleigh can be now used as input data for Rosseland and Planck

ross = Rosseland(input_data=rayleigh)
plan = Planck(input_data=rayleigh)

Because the Rayleigh scattering doesn’t depend on temperature and pressure, is not sampled in a temperatures and
pressures grid as the molecular opacities. Therefore, to estimate its mean opacities the pressure must not be indicated.
The temperature, on the contrary, must be indicated because of the Rosseland and Planck equation involving a black
body. For the same reason, the estimation mode is forced to closest, so should not be indicated by the user. Here is an
example

T = 1000.0 *u.K
wl = (1 * u.um, 10 * u.um)

r_estimate = ross.estimate(T_input=T, band=wl)

6.725572872420127e-08 m2 / kg

p_estimate = plan.estimate(T_input=T, band=wl)

6.518714389415313e-09 m2 / kg

10 Chapter 2. User Guide

http://hbcponline.com/faces/contents/ContentsSearch.xhtml

RAPOC Documentation, Release 1.0.8

Because, again, the Rayleigh scattering doesn’t depend on temperature and pressure, the map() is disabled for this kind
of data

2.3. Include Rayleigh scattering 11

RAPOC Documentation, Release 1.0.8

12 Chapter 2. User Guide

CHAPTER

THREE

API GUIDE

The RAPOC code implements a base Model class that loads the input data (consisting of opacities expressed as a
function of a grid of pressures, temperatures and a wavelength range, and produces the RPO estimates. From the
Model class, two other classes are derived that implement the Rosseland and Planck mean opacity algorithms. The
scheme of the code workflow is as follows:

• Yellow box: this is the first step of the code, which consists of reading the input data. In this step RAPOC loads
the data from the input file. From the input file, RAPOC extracts the opacities with their respective pressures,
temperatures and wavenumbers.

• Orange box: This is the second step, which involves the analysis of the user’s input. Here, the user can specify the
wavelength (or wavenumber, or frequency) interval, pressure, and temperature for calculating the RPO values.
The code automatically parses the input data and uses it for the final step.

• Red box: in the third and final step, RAPOC extracts the specific wavelength-dependent opacities (for the pressure
and temperature requested as well as the wavelength, wavenumber or frequency range chosen) and uses them to
compute their corresponding RPO values. These values are taken from the complete opacity table that encom-
passes the total parameter space. The conversion from wavelength-dependent opacities to RPOs is accomplished
by using the mean opacity models. This can be either the Rosseland or Planck model. Finally, the code returns
the estimate.

13

RAPOC Documentation, Release 1.0.8

3.1 API Content

3.1.1 Planck Model

class rapoc.Planck(input_data)
Planck model class. This class implements the Planck Opacity model:

𝑘 =

∫︀ 𝜈2

𝜈1
𝑘𝜈𝐵𝜈(𝑇)𝑑𝜈∫︀ 𝜈2

𝜈1
𝐵𝜈(𝑇)𝑑𝜈

where 𝜈1 and 𝜈2 are the investigated frequency band edges, 𝑘𝜈 is the input data opacity at a given frequency, and
𝐵𝜈(𝑇) is the black body radiation energy distribution computed at a certain temperature:

𝐵𝜈(𝑇) =
2ℎ𝜈3

𝑐2
1

𝑒
ℎ𝜈

𝑘𝐵𝑇 −1

Variables

• input_data (str or dict) – data file name or data dictionary

• model_name (str) – model name

• band (tuple) – investigated band. Is initialised only after the use of map()

• selected_grid (astropy.units.Quantity) – investigated grid. Is initialised only after
the use of map()

• mol (str) – molecule name

• mol_mass (astropy.units.Quantity) – molecular mass

• pressure_grid (astropy.units.Quantity) – data pressure grid in si units

• temperature_grid (astropy.units.Quantity) – data temperature grid in si units

• wavenumber_grid (astropy.units.Quantity) – data wavenumber grid

• opacities (astropy.units.Quantity) – data opacities grid in si units

• frequency_grid (astropy.units.Quantity) – data frequency grid

• wavelength_grid (astropy.units.Quantity) – data wavelength grid

Parameters
input_data (str or dict) – data file name or input_data dictionary. If the input is a str, the
correspondent loader is used (ExoMolFileLoader) if the file format is supported. If is dict, then
DictLoader is used.

Raises
IOError – if data format is not supported:

14 Chapter 3. API Guide

RAPOC Documentation, Release 1.0.8

Examples

First we prepare a data dictionary:

>>> import numpy as np
>>> data_dict = {'mol': 'H2O',
>>> 'pressure': np.array([1.00000000e+00, 1.00000000e+01, 1.
→˓00000000e+02, 1.00000000e+03,
>>> 1.00000000e+04, 1.00000000e+05, 1.
→˓00000000e+06, 1.00000000e+07]),
>>> 'temperature': np.array([500, 1000, 1500, 2000, 3000]),
>>> 'wavenumber': np.array([100000, 1000])}
>>> ktab = np.ones((data_dict['pressure'].size,data_dict['temperature'].size,data_
→˓dict['wavenumber'].size,))
>>> data_dict['opacities'] = ktab

Let’s build the Planck method using an Exomol file as input

>>> from rapoc import Planck
>>> dict_data = 'example.TauREx.h5'
>>> model = Planck(input_data=data_dict)

Now the model is ready to be used

opacity_model(opacities, nu, T_input)
This function computes the Planck Opacity model:

𝑘 =

∫︀ 𝜈2

𝜈1
𝑘𝜈𝐵𝜈(𝑇)𝑑𝜈∫︀ 𝜈2

𝜈1
𝐵𝜈(𝑇)𝑑𝜈

where 𝜈1 and 𝜈2 are the investigated frequency band edges, 𝑘𝜈 is the input data opacity at a given frequency,
and 𝐵𝜈(𝑇) is the black body radiation energy distribution computed at a certain temperature:

𝐵𝜈(𝑇) =
2ℎ𝜈3

𝑐2
1

𝑒
ℎ𝜈

𝑘𝐵𝑇 −1

Parameters

• opacities (np.array) – opacity array. Has the same dimension of the frequency grid
nu

• nu (np.array) – frequency grid

• T_input (float) – temperature

Returns
mean opacity computed from the model

Return type
float

3.1. API Content 15

RAPOC Documentation, Release 1.0.8

3.1.2 Rosseland Model

class rapoc.Rosseland(input_data)
Rosseland model class. This class implements the Rosseland Opacity model:

1

𝑘
=

∫︀ 𝜈2

𝜈1
𝑘−1
𝜈 𝑢(𝜈, 𝑇)𝑑𝜈∫︀ 𝜈2

𝜈1
𝑢(𝜈, 𝑇)𝑑𝜈

where 𝜈1 and 𝜈2 are the investigated frequency band edges, 𝑘𝜈 is the input data opacity at a given frequency, and
𝑢(𝜈, 𝑇) is the black body temperature derivative:

𝑢(𝜈, 𝑇) =
𝜕𝐵(𝜈, 𝑇)

𝜕𝑇
= 2

ℎ2𝜈4

𝑐2𝑘𝑏

1

𝑇 2

𝑒
ℎ𝜈
𝑘𝑏𝑇

(𝑒
ℎ𝜈
𝑘𝑏𝑇 − 1)2

Variables

• input_data (str or dict) – data file name or data dictionary

• model_name (str) – model name

• band (tuple) – investigated band. Is initialised only after the use of map()

• selected_grid (astropy.units.Quantity) – investigated grid. Is initialised only after
the use of map()

• mol (str) – molecule name

• mol_mass (astropy.units.Quantity) – molecular mass

• pressure_grid (astropy.units.Quantity) – data pressure grid in si units

• temperature_grid (astropy.units.Quantity) – data temperature grid in si units

• wavenumber_grid (astropy.units.Quantity) – data wavenumber grid

• opacities (astropy.units.Quantity) – data opacities grid in si units

• frequency_grid (astropy.units.Quantity) – data frequency grid

• wavelength_grid (astropy.units.Quantity) – data wavelength grid

Parameters
input_data (str or dict) – data file name or input_data dictionary. If the input is a str, the
correspondent loader is used (ExoMolFileLoader) if the file format is supported. If is dict, then
DictLoader is used.

Raises
IOError – if data format is not supported:

Examples

Let’s build the Rosseland method using an Exomol file as input

>>> from rapoc import Rosseland
>>> exomolFile = 'example.TauREx.h5'
>>> model = Rosseland(input_data=exomolFile)

Now the model is ready to be used

16 Chapter 3. API Guide

RAPOC Documentation, Release 1.0.8

opacity_model(opacities, nu, T_input)
This function computes the Rosseland Opacity model:

1

𝑘
=

∫︀ 𝜈2

𝜈1
𝑘−1
𝜈 𝑢(𝜈, 𝑇)𝑑𝜈∫︀ 𝜈2

𝜈1
𝑢(𝜈, 𝑇)𝑑𝜈

where 𝜈1 and 𝜈2 are the investigated frequency band edges, 𝑘𝜈 is the input data opacity at a given frequency,
and 𝑢(𝜈, 𝑇) is the black body temperature derivative:

𝑢(𝜈, 𝑇) =
𝜕𝐵(𝜈, 𝑇)

𝜕𝑇
= 2

ℎ2𝜈4

𝑐2𝑘𝑏

1

𝑇 2

𝑒
ℎ𝜈
𝑘𝑏𝑇

(𝑒
ℎ𝜈
𝑘𝑏𝑇 − 1)2

Parameters

• opacities (np.array) – opacity array. Has the same dimension of the frequency grid
nu

• nu (np.array) – frequency grid

• T_input (float) – temperature

Returns
mean opacity computed from the model

Return type
float

3.1.3 Rayleigh Model

class rapoc.Rayleigh(atom, wavenumber_grid=None, model=None)
The Rayleigh class estimates the Rayleigh scattering for the indicated atom using the equations from Chapter 10
of David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, hbcponline, CRC Press,
Boca Raton, FL, 2005. These values won’t depend on pressure or temperature and therefore only a wavenumbers
grid is needed to produce them. The wavenumbers grid can be given by the user or loaded from an already
initialised Model class (as Rosseland or PLanck). The latter solution might be of help in using the Rayleigh
scattering along with other opacities.

Parameters

• atom (str) – name of the considered atom

• wavenumber_grid (list or numpy.array or astropy.units.Quantity) – data
wavenumber grid

• model (Model) – built model to use to load the wavenumbers grid.

Examples

First we prepare a data wavenumbers grid, then we can produce the Rayleigh data:

>>> rayleigh = Rayleigh('H', wavenumber_grid=[100000, 10000, 1000])

if we already have a molecular model loaded, as example built from a datafile, we can use it to initialise the
Rayleigh class:

3.1. API Content 17

http://hbcponline.com/faces/contents/ContentsSearch.xhtml

RAPOC Documentation, Release 1.0.8

>>> input_data = Rosseland(input_data=exomol_file)
>>> rayleigh = Rayleigh(atom='Na', model=input_data)

Now the Rayleigh data are ready to be used as input data for any RAPOC Model class:

>>> pl = Planck(input_data=rayleigh)
>>> rs = Rosseland(input_data=rayleigh)

compute_opacities()

It computes the opacities for Rayleigh scattering as described in David R. Lide, ed., CRC Handbook of
Chemistry and Physics, Internet Version 2005, hbcponline, CRC Press, Boca Raton, FL, 2005. chapter 10
table 1:

𝛼(𝜆) =
128𝜋5

3𝜆4

𝑎2

𝑚

where 𝑎 is depending on the atom polarizabiility listed in table 2 chapter 10 of CRC handbook, and 𝑚 is
the atom mass.

Returns
returns the estimated opacity sampled at the indicated wavenumbers.

Return type
astropy.units.Quantity

read_content()

Reads the class content and returns the needed valued for the opacity models.

Returns

• str – molecule name

• astropy.units.Quantity – molecular mass

• astropy.units.Quantity – data pressure grid in si units

• astropy.units.Quantity – data temperature grid in si units

• astropy.units.Quantity – data wavenumber grid

• astropy.units.Quantity – data opacities grid in si units

3.1.4 Base Model

class rapoc.models.model.Model(input_data)
Base model class.

Variables

• input_data (str or dict) – data file name or data dictionary

• model_name (str) – model name

• band (tuple) – investigated band. Is initialised only after the use of map()

• selected_grid (astropy.units.Quantity) – investigated grid. Is initialised only after
the use of map()

• mol (str) – molecule name

18 Chapter 3. API Guide

http://hbcponline.com/faces/contents/ContentsSearch.xhtml

RAPOC Documentation, Release 1.0.8

• mol_mass (astropy.units.Quantity) – molecular mass

• pressure_grid (astropy.units.Quantity) – data pressure grid in si units

• temperature_grid (astropy.units.Quantity) – data temperature grid in si units

• wavenumber_grid (astropy.units.Quantity) – data wavenumber grid

• opacities (astropy.units.Quantity) – data opacities grid in si units

• frequency_grid (astropy.units.Quantity) – data frequency grid

• wavelength_grid (astropy.units.Quantity) – data wavelength grid

Parameters
input_data (str or dict) – data file name or input_data dictionary. If the input is a str, the
correspondent loader is used (ExoMolFileLoader) if the file format is supported. If is dict, then
DictLoader is used.

Raises
IOError – if data format is not supported:

Examples

For the sake of semplicity let’s assume we use an ExoMol file as input

>>> from rapoc.models import Model
>>> exomolFile = 'example.TauREx.h5'
>>> model = Model(input_data=exomolFile)

opacity_model(opacities, nu, T_input)
Computes the mean opacity in the investigated range.

Parameters

• opacities (np.array) – opacity array. Has the same dimension of the frequency grid
nu

• nu (np.array) – frequency grid

• T_input (float) – temperature

Returns
mean opacity computed from the model

Return type
float

extract_opacities(T_input, band, P_input=None, units='si')
Returns the input_data opacities for given pressure, temperature and band.

Parameters

• T_input (float or np.array) – temperature to use for the estimation. This should be
a astropy.units.Quantity with specified units, if not K are assumed as units. Can either be
a single value or an array.

• band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the
band to use in the estimation. The units used reveal the intention to work in wavelengths,
wavenumbers or frequencies.

3.1. API Content 19

RAPOC Documentation, Release 1.0.8

• P_input (float or np.array) – pressure to use for the estimation. This should be a
astropy.units.Quantity with specified units, if not Pa are assumed as units. Can either be a
single value or an array. It can be None in the case of data not depending on pressure, as
Rayleigh scattering. Default is None.

• units (str or astropy.units, optional) – indicates the output units system. If si
the opacity is returned as 𝑚2/𝑘𝑔, if cgs is returned as 𝑐𝑚2/𝑔. Instead of a string, you can
also indicate the units using astropy.units. Units is si by default.

Returns

• astropy.units.Quantity – returns the estimated opacity for the pressures and temperatures
indicated. If only one pressure and temperature are indicated, it returns a single Quantity.
If n pressures and m temperatures are indicated, it return a Quantity array of dimensions
(n,m)

• list – list of wavenumber (or wavelength or frequency) index relative to the investigated
band

estimate(T_input, band, P_input=None, mode='closest', units='si')
It estimates the model opacity in the indicated pressure and temperature grid for the indicated band, using
the opacity_model().

Parameters

• T_input (float or np.array) – temperature to use for the estimation. This should be
a astropy.units.Quantity with specified units, if not K are assumed as units. Can either be
a single value or an array.

• band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the
band to use in the estimation. The units used reveal the intention to work in wavelengths,
wavenumbers or frequencies.

• P_input (float or np.array) – pressure to use for the estimation. This should be a
astropy.units.Quantity with specified units, if not Pa are assumed as units. Can either be a
single value or an array. It can be None in the case of data not depending on pressure, as
Rayleigh scattering. Default is None.

• mode (str, optional) – indicates the estimation mode desired. If closest the output
will be the opacity computed from the data at the nearest pressure on the data grid to the
indicated one, and at the nearest temperature on the data grid to the indicated one. If
{‘linear’, ‘loglinear’} it’s used the scipy.interpolate.griddata() with the indicated
kind. To interpolate a map of opacities over the data grid is computed first using map().
Mode is closest by default.

• units (str or astropy.units, optional) – indicates the output units system. If si
the opacity is returned as 𝑚2/𝑘𝑔, if cgs is returned as 𝑐𝑚2/𝑔. Instead of a string, you can
also indicate the units using astropy.units. Units is si by default.

Returns
returns the estimated opacity for the pressures and temperatures indicated. If only one pres-
sure and temperature are indicated, it returns a single Quantity. If n pressures and m temper-
atures are indicated, it return a Quantity array of dimensions (n,m)

Return type
astropy.units.Quantity

Raises

• NotImplementedError: – if the indicated mode is not supported

• astropy.units.UnitConversionError: – if the input units cannot be converted to si

20 Chapter 3. API Guide

RAPOC Documentation, Release 1.0.8

• AttributeError: – if the band cannot be interpreted as wavelength, wavenumber or fre-
quency

estimate_plot(T_input, band, P_input=None, mode='closest', force_map=False, fig=None, ax=None,
yscale='log', xscale='linear', grid='wavelength')

Produces a plot of the estimates (produced with estimate()), comparing the raw data with the result.
If a single estimate is to be plotted, this method produces a plot of raw opacities vs wavelength from the
opacities (in grey) and the mean opacity estimated. If multiple estimates are be plotted, it produces a 3D
plot, with the surface of mean opacity vs temperature and pressure from the data grid (using map_plot())
and the interpolated data superimposed.

Parameters

• T_input (float or np.array) – temperature to use for the estimation. This should be
a astropy.units.Quantity with specified units, if not K are assumed as units. Can either be
a single value or an array.

• band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the
band to use in the estimation. The units used reveal the intention to work in wavelengths,
wavenumbers or frequencies.

• P_input (float or np.array) – pressure to use for the estimation. This should be a
astropy.units.Quantity with specified units, if not Pa are assumed as units. Can either be a
single value or an array. It can be None in the case of data not depending on pressure, as
Rayleigh scattering. Default is None.

• mode (str, optional) – indicates the estimation mode desired. If closest the output
will be the opacity computed from the data at the nearest pressure on the data grid to the
indicated one, and at the nearest temperature on the data grid to the indicated one. If
{‘linear’, ‘loglinear’} it’s used the scipy.interpolate.griddata() with the indicated
kind. Mode is closest by default.

• force_map (bool) – If True a 3D map plot is generate even for a single estimate. Default
is False.

• fig (matplotlib.pyplot.figure, optional) – indicates the figure to use. If None a
new figure is produced. Default is None

• ax (matplotlib.pyplot.axis, optional) – indicates the axis of the figure to use. If
None a new axis is produced. Default is None

• yscale (str) – y-axis scale to use. Default is log

• xscale (str) – x-axis scale to use. Default is linear

• grid (str) – x-axis grid format. {wavelength, frequency, wavenumber} are supported.
Default is wavelength.

Returns

• matplotlib.pyplot.figure, optional – figure containing the plot

• matplotlib.pyplot.axis, optional – axis containing the plot

Raises
KeyError: – if the indicated grid is not supported

map(band)
Returns the mean opacity map for the indicated model.

Parameters
band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the

3.1. API Content 21

RAPOC Documentation, Release 1.0.8

band to use in the estimation. The units used reveal the intention to work in wavelengths,
wavenumbers or frequencies.

Returns
mean opacity map in si units

Return type
np.array

Notes

If the map has been already built for the indicated band, then the method returns the previous map. This
speeds up the use of the code in external functions.

map_plot(band, fig=None, ax=None)
Produces a 3D-plot of the model mean opacity map built with map().

Parameters

• band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the
band to use in the estimation. The units used reveal the intention to work in wavelengths,
wavenumbers or frequencies.

• fig (matplotlib.pyplot.figure, optional) – indicates the figure to use. If None a
new figure is produced. Default is None

• ax (matplotlib.pyplot.axis, optional) – indicates the axis of the figure to use. If
None a new axis is produced. Default is None

Returns

• matplotlib.pyplot.figure, optional – figure containing the plot

• matplotlib.pyplot.axis, optinal – axis containing the plot

3.1.5 ExoMol file loader

class rapoc.loaders.ExoMolFileLoader(filename, molecule=None)
File loader for ExoMol file. It works for opacities file in the TauREx.h5 format. These file can be downloaded
from ExoMol website.

Notes

This class is implicitly called by the model when initialised if the matched input is used.

Examples

Let’s build the Rosseland method using an Exomol file as input

>>> from rapoc import Rosseland
>>> exomolFile = 'example.TauREx.h5'
>>> model = Rosseland(input_data=exomolFile)

Now the model is ready to be used

Parameters

22 Chapter 3. API Guide

http://exomol.com/data/data-types/opacity

RAPOC Documentation, Release 1.0.8

• filename (str) – data file name

• molecule (str) – forced molecule name

3.1.6 DACE file loader

class rapoc.loaders.DACEFileLoader(filename, molecule=None)
File loader for DACE files. It works for opacities files in the binary format. These files can be downloaded from
DACE website.

The scripts used to read the DACE files are inspired by petitRADTRANS.

Notes

This class is implicitly called by the model when initialised if the matched input is used.

Examples

Let’s build the Rosseland method using an DACE files as input. The binary files of the desired molecule should
be stored in a dace_dir.

>>> from rapoc import Rosseland
>>> daceFileList = '/dace_dir'
>>> model = Rosseland(input_data=daceFileList)

Now the model is ready to be used

Warning: This method reads all the binary data in the indicated folder: the user must be cautios to indicate
a directory that contains only the binary files of the desired molecule.

Parameters

• filename (str) – data file name

• molecule (str) – forced molecule name

3.1.7 Base file loader

class rapoc.loaders.DictLoader(input_data)
Dict loader class. The dictionary should contain the following information under certain keys:

information default units supported keys
molecular name mol
pressure grid 𝑃𝑎 p, P, pressure, pressure_grid
temperature grid 𝐾 t, T, temperature, temperature_grid
wavenumber grid 1/𝑐𝑚 wn, wavenumber, wavenumbers, wavenumbers_grid, wavenumber_grid
opacities 𝑚2/𝑘𝑔 opacities

If the input data has no units attached, the defaults units are assume. If they have units, a simple conversion is
performed by the code to match the default values.

3.1. API Content 23

https://dace.unige.ch/opacityDatabase/?
https://petitradtrans.readthedocs.io/en/latest/content/opa_add.html#owtoprt

RAPOC Documentation, Release 1.0.8

Notes

This class is implicitly called by the model when initialised if the matched input is used.

Examples

First we prepare a data dictionary. Please be aware that this are not representative of any molecule.

>>> import numpy as np
>>> data_dict = {'mol': 'None',
>>> 'mol_mass':42,
>>> 'pressure': np.array([1.00000000e+00, 1.00000000e+01, 1.
→˓00000000e+02, 1.00000000e+03,
>>> 1.00000000e+04, 1.00000000e+05, 1.
→˓00000000e+06, 1.00000000e+07]),
>>> 'temperature': np.array([500, 1000, 1500, 2000, 3000]),
>>> 'wavenumber': np.array([100000, 1000])}
>>> opac = np.ones((data_dict['pressure'].size,data_dict['temperature'].size,data_
→˓dict['wavenumber'].size,))
>>> data_dict['opacities'] = opac

Let’s build the Planck method using the dictionary as input

>>> from rapoc import Planck
>>> model = Planck(input_data=data_dict)

Now the model is ready to be used

Parameters
input_data (dict) – input_data dictionary

read_content()

Reads the dict content and returns the needed valued for the opacity models.

Returns

• str – molecule name

• astropy.units.Quantity – molecular mass

• astropy.units.Quantity – data pressure grid in si units

• astropy.units.Quantity – data temperature grid in si units

• astropy.units.Quantity – data wavenumber grid

• astropy.units.Quantity – data opacities grid in si units

24 Chapter 3. API Guide

RAPOC Documentation, Release 1.0.8

3.1.8 Base file loader

class rapoc.loaders.loader.FileLoader(filename, molecule=None)
Base file loaders class.

Parameters

• filename (str) – data file name

• molecule (str) – forced molecule name

read_content()

Reads the file content and returns the needed values for the opacity models.

Returns

• str – molecule name

• astropy.units.Quantity – molecular mass

• astropy.units.Quantity – data pressure grid in si units

• astropy.units.Quantity – data temperature grid in si units

• astropy.units.Quantity – data wavenumber grid

• astropy.units.Quantity – data opacities grid in si units

3.1. API Content 25

RAPOC Documentation, Release 1.0.8

26 Chapter 3. API Guide

CHAPTER

FOUR

CITE

If you use this code or its results, please cite RAPOC: the Rosseland and Planck opacity converter by Mugnai L. V.
and Modirrousta-Galian D. (submitted).

27

RAPOC Documentation, Release 1.0.8

28 Chapter 4. Cite

CHAPTER

FIVE

MEET THE AUTHORS

For more information on the authors, please see their personal websites:

• Lorenzo V. Mugnai

• Darius Modirrousta-Galian

29

https://www.roma1.infn.it/~mugnailo/
https://www.dmodirrousta-galian.com/

RAPOC Documentation, Release 1.0.8

30 Chapter 5. Meet the authors

INDEX

C
compute_opacities() (rapoc.Rayleigh method), 18

D
DACEFileLoader (class in rapoc.loaders), 23
DictLoader (class in rapoc.loaders), 23

E
estimate() (rapoc.models.model.Model method), 20
estimate_plot() (rapoc.models.model.Model

method), 21
ExoMolFileLoader (class in rapoc.loaders), 22
extract_opacities() (rapoc.models.model.Model

method), 19

F
FileLoader (class in rapoc.loaders.loader), 25

M
map() (rapoc.models.model.Model method), 21
map_plot() (rapoc.models.model.Model method), 22
Model (class in rapoc.models.model), 18

O
opacity_model() (rapoc.models.model.Model

method), 19
opacity_model() (rapoc.Planck method), 15
opacity_model() (rapoc.Rosseland method), 16

P
Planck (class in rapoc), 14

R
Rayleigh (class in rapoc), 17
read_content() (rapoc.loaders.DictLoader method),

24
read_content() (rapoc.loaders.loader.FileLoader

method), 25
read_content() (rapoc.Rayleigh method), 18
Rosseland (class in rapoc), 16

31

	Installation & updates
	Installing from Pypi
	Installing from git
	Uninstall Rapoc
	Update Rapoc
	Update from Pypi
	Update from source

	User Guide
	Input
	Using ExoMol (easier)
	Using Dace
	Python dictionary (harder)

	The model
	Calculating the mean opacities
	Build some plots

	Include Rayleigh scattering
	Initialising Rayleigh data
	Estimating Rayleigh mean opacities

	API Guide
	API Content
	Planck Model
	Rosseland Model
	Rayleigh Model
	Base Model
	ExoMol file loader
	DACE file loader
	Base file loader
	Base file loader

	Cite
	Meet the authors
	Index

