

RAPOC: Rosseland And Planck Opacity Converter

[image: _images/logo.png]
Developed by Lorenzo V. Mugnai and Darius Modirrousta-Galian, the RAPOC code is the product of a collaboration between Sapienza Università di Roma,
Università degli Studi di Palermo and INAF - Osservatorio Astronomico di Palermo.

[image: _images/sapienza.png]
[image: _images/inaf_palermo.png]
[image: _images/unipa.png]
RAPOC uses molecular absorption measurements (i.e. wavelength-dependent opacities) to calculate Rosseland and Planck
mean opacities that are commonly used in atmospheric modelling.

RAPOC is designed to be simple, straightforward, and easily incorporated into other codes.
It is completely written in Python and documented with docstrings.

Contents:

	Installation
	Installing from Pypi

	Installing from git

	Uninstall Rapoc

	Update Rapoc

	User Guide
	Input

	The model

	Include Rayleigh scattering

	Full API
	API Content

Cite

If you use this code or its results, please cite RAPOC: the Rosseland and Planck opacity converter by Mugnai L. V. and Modirrousta-Galian D. (submitted).

Meet the authors

For more information on the authors, please see their personal websites:

	Lorenzo V. Mugnai [https://www.roma1.infn.it/~mugnailo/]

	Darius Modirrousta-Galian [https://www.dmodirrousta-galian.com/]

Installation & updates

Installing from Pypi

RAPOC can be installed from the Pypi repository with the following script:

pip install rapoc

Installing from git

RAPOC may also be cloned from the main git repository:

git clone https://github.com/ExObsSim/Rapoc-public.git

The next step is to move into the RAPOC folder:

cd /your_path/Rapoc

Then:

pip install .

To check if one has the correct setup:

python -c "import rapoc"

Uninstall Rapoc

RAPOC is installed in your system as a standard python package:
to uninstall it completely:

pip uninstall rapoc

Update Rapoc

Update from Pypi

To update RAPOC to the latest stable version:

pip install rapoc -upgrade

Update from source

One can download or pull a newer version of RAPOC over the old one, replacing all modified data.

Then one has to place themselves inside the installation directory within the console:

cd /your_path/Rapoc

RAPOC can now be updated:

pip install . --upgrade

or simply:

pip install .

User Guide

This guide is an instruction manual on the RAPOC (Rosseland And Planck Opacity Converter) tool
and how it can be included in one’s own code.

For a quickstart, please refer to the python notebook inside the examples directory.
If RAPOC has been installed from Pypi, an example notebook can be found on the GitHub [https://github.com/ExObsSim/rapoc-public] repository.

Input

Everything inside RAPOC is managed by the Model class.
The only input required by RAPOC is the opacity data.
Opacity data can be directly downloaded from dedicated repositories such as ExoMol or, instead,
by a custom made Python dictionary. In this guide both approaches will be explored:

Using ExoMol (easier)

This is the most straightforward approach.
Note that RAPOC only accepts data with the TauRex format.
Once the opacities have been downloaded from ExoMol [http://exomol.com],
RAPOC will load them using the ExoMolFileLoader.
For practice, we use the TauRex formatted opacities for water [http://exomol.com/db/H2O/1H2-16O/POKAZATEL/1H2-16O__POKAZATEL__R15000_0.3-50mu.xsec.TauREx.h5].
However, if other molecules are required then they can be downloaded here [http://exomol.com/data/data-types/opacity/].

Using Dace

This is another straightforward approach.
The opacities can be downloaded from Dace [https://dace.unige.ch/opacityDatabase/] as binary files.
RAPOC will load them using the DACEFileLoader by pointing to the directory
where the binary files (.bin) are stored.

Python dictionary (harder)

To load data from a Python dictionary, the code uses the DictLoader class.
The user may also refer to its documentation.
To summarise, the python dictionary must have the layout described in the Input data layout.

Input data layout

	Information

	data format

	supported keys names

	molecular name

	string

	mol

	pressure grid in [\(Pa\)]

	list or np.array

	p, P, pressure, pressure_grid

	temperature grid [\(K\)]

	list or np.array

	t, T, temperature, temperature_grid

	wavenumber grid [\(1/cm\)]

	list or np.array

	wn, wavenumber, wavenumbers, wavenumbers_grid, wavenumber_grid

	opacities [\(m^2/kg\)]

	list or np.array

	opacities

Every value in the dictionary can be assigned units by using the units astropy.units.Quantity.

The model

In this section we will assume that the data has been downloaded from ExoMol [http://exomol.com] and
that the input_file variable is a string pointing to that file.

Once the data is ready, it may loaded into the Model class.
After this, two classes can be produced, one for Rosseland and the other for Planck mean opacities:
Rosseland, Planck. These models can be initialised as such:

from rapoc import Rosseland, Planck

ross = Rosseland(input_data=input_file)
plan = Planck(input_data=input_file)

Normally, the molecule name is automatically extracted from the input data.
However, if the molecule name is not present in the input data or if any errors occur, it can be manually set using the molecule keyword argument:

ross = Rosseland(input_data=input_file, molecule='H2O')
plan = Planck(input_data=input_file, molecule='H2O')

Calculating the mean opacities

For purely illustrative purposes, a temperature (T) of 1000 K with a pressure (P) of 1000 Pa
in the wavelength range of 1-10 micron will be used.
Therefore, the first step is to define the temperature, pressure and wavelength range:

import astropy.units as u

P = 1000.0 *u.Pa
T = 1000.0 *u.K
wl = (1 * u.um, 10 * u.um)

Due to the units provided by the astropy.units.Quantity module, RAPOC can handle the conversions automatically.
To perform the opacity calculations the following function is used: estimate()

r_estimate = ross.estimate(P_input = P, T_input=T, band=wl, mode='closest')

0.00418 m2 / kg

p_estimate = plan.estimate(P_input = P, T_input=T, band=wl, mode='closest')

17.9466 m2 / kg

The investigated wavelength range may also be expressed as a wavenumbers range or frequencies range.
This is achieved by attaching the corresponding units.

There are two estimation modes available in RAPOC:

	closest: the code estimates the mean opacity for the closest pressure and temperature values found within the input data grid.

	linear or loglinear: the code estimates the mean opacity by performing an interpolation that makes use of the scipy.interpolate.griddata().

In the second case, RAPOC needs to first build a map() of the mean opacities
in the input pressure and temperature data grid.
This may be slow. To make this process faster, RAPOC will continue to reuse this map until the user
asks for estimates in another wavelength range. Only then would RAPOC produce a new map.

RAPOC can also perform estimates of multiple temperatures and pressures at once (e.g. lists and arrays):

P = [1, 10] *u.bar
T = [500.0, 1000.0, 2000.0] *u.K
wl = (1 * u.um, 10 * u.um)

r_estimate = ross.estimate(P_input = P, T_input=T, band=wl, mode='closest')

[[0.00094728 0.03303942 0.17086334]
 [0.00484263 0.08600765 0.21673218]] m2 / kg

p_estimate = plan.estimate(P_input = P, T_input=T, band=wl, mode='closest')

[[27.18478963 17.36108261 8.57782242]
 [27.17086583 17.78923892 8.8249388]] m2 / kg

Build some plots

RAPOC can build plots of the calculated Rosseland and Planck mean opacities by using estimate_plot().

If only a single value has been produced, then to produce plots one can use the following script:

P = 1000.0 *u.Pa
T = 1000.0 *u.K
wl = (1 * u.um, 10 * u.um)

fig0, ax0 = ross.estimate_plot(P_input = P, T_input=T, band=wl, mode='closest')
fig1, ax1 = plan.estimate_plot(P_input = P, T_input=T, band=wl, mode='closest')

[image: _images/Figure1.png]
[image: _images/Figure2.png]

If instead multiple opacities have been calculated, then then the script should be:

P = [1, 10] *u.bar
T = [500.0, 1000.0, 2000.0] *u.K
wl = (1 * u.um, 10 * u.um)

fig0, ax0 = ross.estimate_plot(P_input = P, T_input=T, band=wl, mode='closest')
fig1, ax1 = plan.estimate_plot(P_input = P, T_input=T, band=wl, mode='closest')

[image: _images/Figure3.png]
[image: _images/Figure4.png]

Notwithstanding, to force the production of a map_plot() with a single value,
the following should be used force_map=True

Include Rayleigh scattering

Initialising Rayleigh data

RAPOC can estimate the Rayleigh scattering absorption for a list of atoms, using the tables and equations
in Chapter 10 of David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005,
hbcponline [http://hbcponline.com/faces/contents/ContentsSearch.xhtml], CRC Press, Boca Raton, FL, 2005.

To compute the Rayleigh scattering mean opacities, the first step is to produce the Rayleigh data set.
This can be done initialising the Rayleigh class. This class is similar to a
FileLoader class: it can be injected into a Model as input data,
and therefore used as any other input data to estimate the mean opacities.

To initialise the Rayleigh it is needed the atom and the wavenumber grid to use to sample the Rayleigh scattering.
In the following example we estimate the scattering data for hydrogen in a simple wavenumber grid: 100000, 10000, 1000 cm-1

from rapoc import Rayleigh
rayleigh = Rayleigh('H', wavenumber_grid=[100000, 10000, 1000])

Another way to initialise the Rayleigh is to use an already initialised Model.
This can be useful is the Rayleigh scattering is to be used along with other absorptions. Let’s assume that a
Planck class has been initialised already.
That model can be used to produce a Rayleigh scattering dataset sampled at the same wavenumbers grid.

plan = Planck(input_data=input_file)
rayleigh = Rayleigh('H', model=plan)

Once the wavenumber grid is produced, either using the wavenumber_grid or the model keyword, the class produces the
opacities data using the compute_opacities().

Estimating Rayleigh mean opacities

The initialised Rayleigh can be now used as input data for Rosseland and
Planck

ross = Rosseland(input_data=rayleigh)
plan = Planck(input_data=rayleigh)

Because the Rayleigh scattering doesn’t depend on temperature and pressure, is not sampled in a temperatures and
pressures grid as the molecular opacities. Therefore, to estimate its mean opacities the pressure must not be indicated.
The temperature, on the contrary, must be indicated because of the Rosseland and Planck equation involving a black body.
For the same reason, the estimation mode is forced to closest, so should not be indicated by the user.
Here is an example

T = 1000.0 *u.K
wl = (1 * u.um, 10 * u.um)

r_estimate = ross.estimate(T_input=T, band=wl)

6.725572872420127e-08 m2 / kg

p_estimate = plan.estimate(T_input=T, band=wl)

6.518714389415313e-09 m2 / kg

Because, again, the Rayleigh scattering doesn’t depend on temperature and pressure, the map()
is disabled for this kind of data

API Guide

The RAPOC code implements a base Model class that loads the input data
(consisting of opacities expressed as a function of a grid of pressures, temperatures and a wavelength range,
and produces the RPO estimates.
From the Model class, two other classes are derived that implement the
Rosseland and Planck mean opacity algorithms.
The scheme of the code workflow is as follows:

[image: ../_images/RAPOC_scheme.png]

	Yellow box: this is the first step of the code, which consists of reading the input data.
In this step RAPOC loads the data from the input file.
From the input file, RAPOC extracts the opacities with their respective pressures, temperatures and wavenumbers.

	Orange box: This is the second step, which involves the analysis of the user’s input.
Here, the user can specify the wavelength (or wavenumber, or frequency) interval, pressure,
and temperature for calculating the RPO values. The code automatically parses the input data and uses it for the final step.

	Red box: in the third and final step, RAPOC extracts the specific wavelength-dependent opacities
(for the pressure and temperature requested as well as the wavelength, wavenumber or frequency range chosen)
and uses them to compute their corresponding RPO values.
These values are taken from the complete opacity table that encompasses the total parameter space.
The conversion from wavelength-dependent opacities to RPOs is accomplished by using the mean opacity models.
This can be either the Rosseland or Planck model. Finally, the code returns the estimate.

API Content

	Planck model
	Planck

	Rosseland model
	Rosseland

	Rayleigh model
	Rayleigh

	Base model
	Model

	ExoMol file loader
	ExoMolFileLoader

	DACE file loader
	DACEFileLoader

	Dict loader
	DictLoader

	Base file loader
	FileLoader

Planck Model

	
class rapoc.Planck(input_data)

	Planck model class. This class implements the Planck Opacity model:

\[k = \frac{\int_{\nu_1}^{\nu_2} k_{\nu} B_\nu(T) d\nu}
{\int_{\nu_1}^{\nu_2} B_\nu(T) d\nu}\]

where \(\nu_1\) and \(\nu_2\) are the investigated frequency band edges,
\(k_{\nu}\) is the input data opacity at a given frequency,
and \(B_\nu(T)\) is the black body radiation energy distribution computed at a certain temperature:

\[B_\nu(T) = \frac{2h \nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{k_B T}-1}}\]

	Variables:

	
	input_data (str or dict) – data file name or data dictionary

	model_name (str) – model name

	band (tuple) – investigated band. Is initialised only after the use of map()

	selected_grid (astropy.units.Quantity) – investigated grid. Is initialised only after the use of map()

	mol (str) – molecule name

	mol_mass (astropy.units.Quantity) – molecular mass

	pressure_grid (astropy.units.Quantity) – data pressure grid in si units

	temperature_grid (astropy.units.Quantity) – data temperature grid in si units

	wavenumber_grid (astropy.units.Quantity) – data wavenumber grid

	opacities (astropy.units.Quantity) – data opacities grid in si units

	frequency_grid (astropy.units.Quantity) – data frequency grid

	wavelength_grid (astropy.units.Quantity) – data wavelength grid

	Parameters:

	input_data (str or dict) – data file name or input_data dictionary.
If the input is a str, the correspondent loader is used (ExoMolFileLoader)
if the file format is supported.
If is dict, then DictLoader is used.

	Raises:

	IOError – if data format is not supported:

Examples

First we prepare a data dictionary:

>>> import numpy as np
>>> data_dict = {'mol': 'H2O',
>>> 'pressure': np.array([1.00000000e+00, 1.00000000e+01, 1.00000000e+02, 1.00000000e+03,
>>> 1.00000000e+04, 1.00000000e+05, 1.00000000e+06, 1.00000000e+07]),
>>> 'temperature': np.array([500, 1000, 1500, 2000, 3000]),
>>> 'wavenumber': np.array([100000, 1000])}
>>> ktab = np.ones((data_dict['pressure'].size,data_dict['temperature'].size,data_dict['wavenumber'].size,))
>>> data_dict['opacities'] = ktab

Let’s build the Planck method using an Exomol file as input

>>> from rapoc import Planck
>>> dict_data = 'example.TauREx.h5'
>>> model = Planck(input_data=data_dict)

Now the model is ready to be used

	
opacity_model(opacities, nu, T_input)

	This function computes the Planck Opacity model:

\[k = \frac{\int_{\nu_1}^{\nu_2} k_{\nu} B_\nu(T) d\nu}
{\int_{\nu_1}^{\nu_2} B_\nu(T) d\nu}\]

where \(\nu_1\) and \(\nu_2\) are the investigated frequency band edges,
\(k_{\nu}\) is the input data opacity at a given frequency,
and \(B_\nu(T)\) is the black body radiation energy distribution computed at a certain temperature:

\[B_\nu(T) = \frac{2h \nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{k_B T}-1}}\]

	Parameters:

	
	opacities (np.array) – opacity array. Has the same dimension of the frequency grid nu

	nu (np.array) – frequency grid

	T_input (float) – temperature

	Returns:

	mean opacity computed from the model

	Return type:

	float

Rosseland Model

	
class rapoc.Rosseland(input_data)

	Rosseland model class. This class implements the Rosseland Opacity model:

\[\frac{1}{k} = \frac{\int_{\nu_1}^{\nu_2} k_{\nu}^{-1} u(\nu, T) d\nu}
{\int_{\nu_1}^{\nu_2} u(\nu, T) d\nu}\]

where \(\nu_1\) and \(\nu_2\) are the investigated frequency band edges,
\(k_{\nu}\) is the input data opacity at a given frequency,
and \(u(\nu,T)\) is the black body temperature derivative:

\[u(\nu, T) = \frac{\partial B(\nu, T)}{\partial T} =
2 \frac{h^2 \nu^4}{c^2 k_b} \frac{1}{T^2} \frac{e^{\frac{h \nu}{k_b T}}}{(e^{\frac{h \nu}{k_b T}} -1)^2}\]

	Variables:

	
	input_data (str or dict) – data file name or data dictionary

	model_name (str) – model name

	band (tuple) – investigated band. Is initialised only after the use of map()

	selected_grid (astropy.units.Quantity) – investigated grid. Is initialised only after the use of map()

	mol (str) – molecule name

	mol_mass (astropy.units.Quantity) – molecular mass

	pressure_grid (astropy.units.Quantity) – data pressure grid in si units

	temperature_grid (astropy.units.Quantity) – data temperature grid in si units

	wavenumber_grid (astropy.units.Quantity) – data wavenumber grid

	opacities (astropy.units.Quantity) – data opacities grid in si units

	frequency_grid (astropy.units.Quantity) – data frequency grid

	wavelength_grid (astropy.units.Quantity) – data wavelength grid

	Parameters:

	input_data (str or dict) – data file name or input_data dictionary.
If the input is a str, the correspondent loader is used (ExoMolFileLoader)
if the file format is supported.
If is dict, then DictLoader is used.

	Raises:

	IOError – if data format is not supported:

Examples

Let’s build the Rosseland method using an Exomol file as input

>>> from rapoc import Rosseland
>>> exomolFile = 'example.TauREx.h5'
>>> model = Rosseland(input_data=exomolFile)

Now the model is ready to be used

	
opacity_model(opacities, nu, T_input)

	This function computes the Rosseland Opacity model:

\[\frac{1}{k} = \frac{\int_{\nu_1}^{\nu_2} k_{\nu}^{-1} u(\nu, T) d\nu}
{\int_{\nu_1}^{\nu_2} u(\nu, T) d\nu}\]

where \(\nu_1\) and \(\nu_2\) are the investigated frequency band edges,
\(k_{\nu}\) is the input data opacity at a given frequency,
and \(u(\nu,T)\) is the black body temperature derivative:

\[u(\nu, T) = \frac{\partial B(\nu, T)}{\partial T} =
2 \frac{h^2 \nu^4}{c^2 k_b} \frac{1}{T^2} \frac{e^{\frac{h \nu}{k_b T}}}{(e^{\frac{h \nu}{k_b T}} -1)^2}\]

	Parameters:

	
	opacities (np.array) – opacity array. Has the same dimension of the frequency grid nu

	nu (np.array) – frequency grid

	T_input (float) – temperature

	Returns:

	mean opacity computed from the model

	Return type:

	float

Rayleigh Model

	
class rapoc.Rayleigh(atom, wavenumber_grid=None, model=None)

	The Rayleigh class estimates the Rayleigh scattering for the indicated atom using the
equations from Chapter 10 of David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005,
hbcponline [http://hbcponline.com/faces/contents/ContentsSearch.xhtml], CRC Press, Boca Raton, FL, 2005.
These values won’t depend on pressure or temperature and therefore only a wavenumbers grid is needed to produce them.
The wavenumbers grid can be given by the user or loaded from an already initialised
Model class (as Rosseland or PLanck).
The latter solution might be of help in using the Rayleigh scattering along with other opacities.

	Parameters:

	
	atom (str) – name of the considered atom

	wavenumber_grid (list or numpy.array or astropy.units.Quantity) – data wavenumber grid

	model (Model) – built model to use to load the wavenumbers grid.

Examples

First we prepare a data wavenumbers grid, then we can produce the Rayleigh data:

>>> rayleigh = Rayleigh('H', wavenumber_grid=[100000, 10000, 1000])

if we already have a molecular model loaded, as example built from a datafile,
we can use it to initialise the Rayleigh class:

>>> input_data = Rosseland(input_data=exomol_file)
>>> rayleigh = Rayleigh(atom='Na', model=input_data)

Now the Rayleigh data are ready to be used as input data for any RAPOC Model class:

>>> pl = Planck(input_data=rayleigh)
>>> rs = Rosseland(input_data=rayleigh)

	
compute_opacities()

	It computes the opacities for Rayleigh scattering as described in David R. Lide, ed.,
CRC Handbook of Chemistry and Physics, Internet Version 2005,
hbcponline [http://hbcponline.com/faces/contents/ContentsSearch.xhtml], CRC Press, Boca Raton, FL, 2005.
chapter 10 table 1:

\[\alpha(\lambda) = \frac{128 \pi^5}{3 \lambda^4} \frac{a^2}{m}\]

where \(a\) is depending on the atom polarizabiility listed in table 2 chapter 10 of CRC handbook,
and \(m\) is the atom mass.

	Returns:

	returns the estimated opacity sampled at the indicated wavenumbers.

	Return type:

	astropy.units.Quantity

	
read_content()

	Reads the class content and returns the needed valued for the opacity models.

	Returns:

	
	str – molecule name

	astropy.units.Quantity – molecular mass

	astropy.units.Quantity – data pressure grid in si units

	astropy.units.Quantity – data temperature grid in si units

	astropy.units.Quantity – data wavenumber grid

	astropy.units.Quantity – data opacities grid in si units

Base Model

	
class rapoc.models.model.Model(input_data)

	Base model class.

	Variables:

	
	input_data (str or dict) – data file name or data dictionary

	model_name (str) – model name

	band (tuple) – investigated band. Is initialised only after the use of map()

	selected_grid (astropy.units.Quantity) – investigated grid. Is initialised only after the use of map()

	mol (str) – molecule name

	mol_mass (astropy.units.Quantity) – molecular mass

	pressure_grid (astropy.units.Quantity) – data pressure grid in si units

	temperature_grid (astropy.units.Quantity) – data temperature grid in si units

	wavenumber_grid (astropy.units.Quantity) – data wavenumber grid

	opacities (astropy.units.Quantity) – data opacities grid in si units

	frequency_grid (astropy.units.Quantity) – data frequency grid

	wavelength_grid (astropy.units.Quantity) – data wavelength grid

	Parameters:

	input_data (str or dict) – data file name or input_data dictionary.
If the input is a str, the correspondent loader is used (ExoMolFileLoader)
if the file format is supported.
If is dict, then DictLoader is used.

	Raises:

	IOError – if data format is not supported:

Examples

For the sake of semplicity let’s assume we use an ExoMol file as input

>>> from rapoc.models import Model
>>> exomolFile = 'example.TauREx.h5'
>>> model = Model(input_data=exomolFile)

	
opacity_model(opacities, nu, T_input)

	Computes the mean opacity in the investigated range.

	Parameters:

	
	opacities (np.array) – opacity array. Has the same dimension of the frequency grid nu

	nu (np.array) – frequency grid

	T_input (float) – temperature

	Returns:

	mean opacity computed from the model

	Return type:

	float

	
extract_opacities(T_input, band, P_input=None, units='si')

	Returns the input_data opacities for given pressure, temperature and band.

	Parameters:

	
	T_input (float or np.array) – temperature to use for the estimation.
This should be a astropy.units.Quantity with specified units, if not K are assumed as units.
Can either be a single value or an array.

	band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the band to use
in the estimation.
The units used reveal the intention to work in wavelengths, wavenumbers or frequencies.

	P_input (float or np.array) – pressure to use for the estimation.
This should be a astropy.units.Quantity with specified units, if not Pa are assumed as units.
Can either be a single value or an array. It can be None in the case of data not depending on pressure,
as Rayleigh scattering. Default is None.

	units (str or astropy.units, optional) – indicates the output units system.
If si the opacity is returned as \(m^2/kg\), if cgs is returned as \(cm^2/g\).
Instead of a string, you can also indicate the units using astropy.units. Units is si by default.

	Returns:

	
	astropy.units.Quantity – returns the estimated opacity for the pressures and temperatures indicated.
If only one pressure and temperature are indicated, it returns a single Quantity.
If n pressures and m temperatures are indicated, it return a Quantity array of dimensions (n,m)

	list – list of wavenumber (or wavelength or frequency) index relative to the investigated band

	
estimate(T_input, band, P_input=None, mode='closest', units='si')

	It estimates the model opacity in the indicated pressure and temperature grid for the indicated band,
using the opacity_model().

	Parameters:

	
	T_input (float or np.array) – temperature to use for the estimation.
This should be a astropy.units.Quantity with specified units, if not K are assumed as units.
Can either be a single value or an array.

	band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the band to use
in the estimation.
The units used reveal the intention to work in wavelengths, wavenumbers or frequencies.

	P_input (float or np.array) – pressure to use for the estimation.
This should be a astropy.units.Quantity with specified units, if not Pa are assumed as units.
Can either be a single value or an array. It can be None in the case of data not depending on pressure,
as Rayleigh scattering. Default is None.

	mode (str, optional) – indicates the estimation mode desired. If closest the output will be the opacity computed from the data at
the nearest pressure on the data grid to the indicated one, and at the nearest temperature on the data grid
to the indicated one. If {‘linear’, ‘loglinear’} it’s used the scipy.interpolate.griddata()
with the indicated kind.
To interpolate a map of opacities over the data grid is computed first using map().
Mode is closest by default.

	units (str or astropy.units, optional) – indicates the output units system.
If si the opacity is returned as \(m^2/kg\), if cgs is returned as \(cm^2/g\).
Instead of a string, you can also indicate the units using astropy.units. Units is si by default.

	Returns:

	returns the estimated opacity for the pressures and temperatures indicated.
If only one pressure and temperature are indicated, it returns a single Quantity.
If n pressures and m temperatures are indicated, it return a Quantity array of dimensions (n,m)

	Return type:

	astropy.units.Quantity

	Raises:

	
	NotImplementedError: – if the indicated mode is not supported

	astropy.units.UnitConversionError: – if the input units cannot be converted to si

	AttributeError: – if the band cannot be interpreted as wavelength, wavenumber or frequency

	
estimate_plot(T_input, band, P_input=None, mode='closest', force_map=False, fig=None, ax=None, yscale='log', xscale='linear', grid='wavelength')

	Produces a plot of the estimates (produced with estimate()),
comparing the raw data with the result.
If a single estimate is to be plotted, this method produces a plot of raw opacities vs wavelength
from the opacities (in grey) and the mean opacity estimated.
If multiple estimates are be plotted, it produces a 3D plot, with the surface of mean opacity vs
temperature and pressure from the data grid (using map_plot())
and the interpolated data superimposed.

	Parameters:

	
	T_input (float or np.array) – temperature to use for the estimation.
This should be a astropy.units.Quantity with specified units, if not K are assumed as units.
Can either be a single value or an array.

	band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the band to use
in the estimation.
The units used reveal the intention to work in wavelengths, wavenumbers or frequencies.

	P_input (float or np.array) – pressure to use for the estimation.
This should be a astropy.units.Quantity with specified units, if not Pa are assumed as units.
Can either be a single value or an array. It can be None in the case of data not depending on pressure,
as Rayleigh scattering. Default is None.

	mode (str, optional) – indicates the estimation mode desired. If closest the output will be the opacity computed from the data at
the nearest pressure on the data grid to the indicated one, and at the nearest temperature on the data grid
to the indicated one. If {‘linear’, ‘loglinear’} it’s used the scipy.interpolate.griddata()
with the indicated kind.
Mode is closest by default.

	force_map (bool) – If True a 3D map plot is generate even for a single estimate. Default is False.

	fig (matplotlib.pyplot.figure, optional) – indicates the figure to use. If None a new figure is produced. Default is None

	ax (matplotlib.pyplot.axis, optional) – indicates the axis of the figure to use. If None a new axis is produced. Default is None

	yscale (str) – y-axis scale to use. Default is log

	xscale (str) – x-axis scale to use. Default is linear

	grid (str) – x-axis grid format. {wavelength, frequency, wavenumber} are supported. Default is wavelength.

	Returns:

	
	matplotlib.pyplot.figure, optional – figure containing the plot

	matplotlib.pyplot.axis, optional – axis containing the plot

	Raises:

	KeyError: – if the indicated grid is not supported

	
map(band)

	Returns the mean opacity map for the indicated model.

	Parameters:

	band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the band to use
in the estimation.
The units used reveal the intention to work in wavelengths, wavenumbers or frequencies.

	Returns:

	mean opacity map in si units

	Return type:

	np.array

Notes

If the map has been already built for the indicated band, then the method returns the previous map.
This speeds up the use of the code in external functions.

	
map_plot(band, fig=None, ax=None)

	Produces a 3D-plot of the model mean opacity map built with map().

	Parameters:

	
	band (tuple) – this should be a tuple of astropy.units.Quantity indicating the edges of the band to use
in the estimation.
The units used reveal the intention to work in wavelengths, wavenumbers or frequencies.

	fig (matplotlib.pyplot.figure, optional) – indicates the figure to use. If None a new figure is produced. Default is None

	ax (matplotlib.pyplot.axis, optional) – indicates the axis of the figure to use. If None a new axis is produced. Default is None

	Returns:

	
	matplotlib.pyplot.figure, optional – figure containing the plot

	matplotlib.pyplot.axis, optinal – axis containing the plot

ExoMol file loader

	
class rapoc.loaders.ExoMolFileLoader(filename, molecule=None)

	File loader for ExoMol file. It works for opacities file in the TauREx.h5 format.
These file can be downloaded from ExoMol website [http://exomol.com/data/data-types/opacity].

Notes

This class is implicitly called by the model when initialised if the matched input is used.

Examples

Let’s build the Rosseland method using an Exomol file as input

>>> from rapoc import Rosseland
>>> exomolFile = 'example.TauREx.h5'
>>> model = Rosseland(input_data=exomolFile)

Now the model is ready to be used

	Parameters:

	
	filename (str) – data file name

	molecule (str) – forced molecule name

DACE file loader

	
class rapoc.loaders.DACEFileLoader(filename, molecule=None)

	File loader for DACE files. It works for opacities files in the binary format.
These files can be downloaded from DACE website [https://dace.unige.ch/opacityDatabase/?].

The scripts used to read the DACE files are inspired by petitRADTRANS [https://petitradtrans.readthedocs.io/en/latest/content/opa_add.html#owtoprt].

Notes

This class is implicitly called by the model when initialised if the matched input is used.

Examples

Let’s build the Rosseland method using an DACE files as input.
The binary files of the desired molecule should be stored in a dace_dir.

>>> from rapoc import Rosseland
>>> daceFileList = '/dace_dir'
>>> model = Rosseland(input_data=daceFileList)

Now the model is ready to be used

Warning

This method reads all the binary data in the indicated folder: the user must be cautios to indicate a directory that
contains only the binary files of the desired molecule.

	Parameters:

	
	filename (str) – data file name

	molecule (str) – forced molecule name

Base file loader

	
class rapoc.loaders.DictLoader(input_data)

	Dict loader class. The dictionary should contain the following information under certain keys:

	information

	default units

	supported keys

	molecular name

	
	mol

	pressure grid

	\(Pa\)

	p, P, pressure, pressure_grid

	temperature grid

	\(K\)

	t, T, temperature, temperature_grid

	wavenumber grid

	\(1/cm\)

	wn, wavenumber, wavenumbers, wavenumbers_grid, wavenumber_grid

	opacities

	\(m^2/kg\)

	opacities

If the input data has no units attached, the defaults units are assume.
If they have units, a simple conversion is performed by the code to match the default values.

Notes

This class is implicitly called by the model when initialised if the matched input is used.

Examples

First we prepare a data dictionary. Please be aware that this are not representative of any molecule.

>>> import numpy as np
>>> data_dict = {'mol': 'None',
>>> 'mol_mass':42,
>>> 'pressure': np.array([1.00000000e+00, 1.00000000e+01, 1.00000000e+02, 1.00000000e+03,
>>> 1.00000000e+04, 1.00000000e+05, 1.00000000e+06, 1.00000000e+07]),
>>> 'temperature': np.array([500, 1000, 1500, 2000, 3000]),
>>> 'wavenumber': np.array([100000, 1000])}
>>> opac = np.ones((data_dict['pressure'].size,data_dict['temperature'].size,data_dict['wavenumber'].size,))
>>> data_dict['opacities'] = opac

Let’s build the Planck method using the dictionary as input

>>> from rapoc import Planck
>>> model = Planck(input_data=data_dict)

Now the model is ready to be used

	Parameters:

	input_data (dict) – input_data dictionary

	
read_content()

	Reads the dict content and returns the needed valued for the opacity models.

	Returns:

	
	str – molecule name

	astropy.units.Quantity – molecular mass

	astropy.units.Quantity – data pressure grid in si units

	astropy.units.Quantity – data temperature grid in si units

	astropy.units.Quantity – data wavenumber grid

	astropy.units.Quantity – data opacities grid in si units

Base file loader

	
class rapoc.loaders.loader.FileLoader(filename, molecule=None)

	Base file loaders class.

	Parameters:

	
	filename (str) – data file name

	molecule (str) – forced molecule name

	
read_content()

	Reads the file content and returns the needed values for the opacity models.

	Returns:

	
	str – molecule name

	astropy.units.Quantity – molecular mass

	astropy.units.Quantity – data pressure grid in si units

	astropy.units.Quantity – data temperature grid in si units

	astropy.units.Quantity – data wavenumber grid

	astropy.units.Quantity – data opacities grid in si units

Index

 C
 | D
 | E
 | F
 | M
 | O
 | P
 | R

C

 	
 	compute_opacities() (rapoc.Rayleigh method)

D

 	
 	DACEFileLoader (class in rapoc.loaders)

 	
 	DictLoader (class in rapoc.loaders)

E

 	
 	estimate() (rapoc.models.model.Model method)

 	estimate_plot() (rapoc.models.model.Model method)

 	
 	ExoMolFileLoader (class in rapoc.loaders)

 	extract_opacities() (rapoc.models.model.Model method)

F

 	
 	FileLoader (class in rapoc.loaders.loader)

M

 	
 	map() (rapoc.models.model.Model method)

 	
 	map_plot() (rapoc.models.model.Model method)

 	Model (class in rapoc.models.model)

O

 	
 	opacity_model() (rapoc.models.model.Model method)

 	(rapoc.Planck method)

 	(rapoc.Rosseland method)

P

 	
 	Planck (class in rapoc)

R

 	
 	Rayleigh (class in rapoc)

 	read_content() (rapoc.loaders.DictLoader method)

 	(rapoc.loaders.loader.FileLoader method)

 	(rapoc.Rayleigh method)

 	
 	Rosseland (class in rapoc)

 _images/unipa.png

_static/Figure1.png
m2/kg

Rosseland

10%

10!

1071

1072

10

6

wavelength [um]

_images/logo.png

_images/sapienza.png

_static/Figure4.png

_static/Figure2.png
m2/kg

Planck

10%

10!

1071

1072

10

6

wavelength [um]

_static/Figure3.png
Rosseland

_static/file.png

_images/Figure4.png

_images/RAPOC_scheme.png
Step1 Step2 Step3
investigated “Temperature
{ et Pressure inpu =5
po—
Selection gk |
L) L L Y T -
/Ay SRR — /e L ——
= L= /
s) / ——
[fL o/ cptes e (—
requency gid / / / / '/

A

_images/Figure2.png
m2/kg

Planck

10%

10!

1071

1072

10

6

wavelength [um]

_images/Figure3.png
Rosseland

_images/inaf_palermo.png

_static/inaf_palermo.png

nav.xhtml

 Table of Contents

 		
 RAPOC: Rosseland And Planck Opacity Converter

 		
 Installation

 		
 Installing from Pypi

 		
 Installing from git

 		
 Uninstall Rapoc

 		
 Update Rapoc

 		
 Update from Pypi

 		
 Update from source

 		
 User Guide

 		
 Input

 		
 Using ExoMol (easier)

 		
 Using Dace

 		
 Python dictionary (harder)

 		
 The model

 		
 Calculating the mean opacities

 		
 Build some plots

 		
 Include Rayleigh scattering

 		
 Initialising Rayleigh data

 		
 Estimating Rayleigh mean opacities

 		
 Full API

 		
 API Content

 		
 Planck model

 		
 Rosseland model

 		
 Rayleigh model

 		
 Base model

 		
 ExoMol file loader

 		
 DACE file loader

 		
 Dict loader

 		
 Base file loader

_static/plus.png

_images/Figure1.png
m2/kg

Rosseland

10%

10!

1071

1072

10

6

wavelength [um]

_static/logo.png

_static/minus.png

_static/sapienza.png

_static/unipa.png

